On vertex in-out-antimagic total digraphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10257252" target="_blank" >RIV/61989100:27240/24:10257252 - isvavai.cz</a>
Result on the web
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001325842500001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001325842500001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2023.113758" target="_blank" >10.1016/j.disc.2023.113758</a>
Alternative languages
Result language
angličtina
Original language name
On vertex in-out-antimagic total digraphs
Original language description
A vertex in-out-antimagic total labeling of a directed graph (digraph) D = (V, A) with n vertices and m arcs is a bijection from the set V boolean OR A to the set of integers {1, 2, ... , m +n} such that all n vertex in-weights are pairwise distinct and simultaneously all n vertex out-weights are pairwise distinct. The vertex in-weight is the sum of the vertex label and the labels of all incoming arcs and the vertex out-weight is the sum of the vertex label and the labels of all outgoing arcs. In this paper we provide a general way how to label dense digraphs and certain sparse digraphs. Further, we add constructions of the labeling for three large infinite classes of digraphs and we conjecture that all digraphs allow such a labeling. (c) 2023 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
1872-681X
Volume of the periodical
347
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
—
UT code for WoS article
001325842500001
EID of the result in the Scopus database
—