All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An efficient approach for sustainable fly ash geopolymer by coupled activation of wet-milling mechanical force and calcium hydroxide

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27690%2F22%3A10250519" target="_blank" >RIV/61989100:27690/22:10250519 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0959652622033480" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0959652622033480</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jclepro.2022.133771" target="_blank" >10.1016/j.jclepro.2022.133771</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An efficient approach for sustainable fly ash geopolymer by coupled activation of wet-milling mechanical force and calcium hydroxide

  • Original language description

    Geopolymer is a potential substitute for high-emission cement production. Therefore, the use of fly ash with high emission as a geopolymer is an environmentally friendly and inexpensive direction. However, fly ash (FA) is a high amorphous precursor with low pozzolanic reactivity making it difficult to be activated by calcium hydroxide. In this study, the coupling of wet-milling mechanical force and calcium hydroxide was used to prepare high-performance alkaline calcium activated geopolymers. Two kinds of FA slurries with different particle sizes of D50 = 2.96 μm and 14.2 μm were prepared, activated by calcium hydroxide (CH) with the content of 4%, 11% and 19%. Results indicated that the increase of calcium hydroxide content was beneficial to developing strength, effectively improving the chloride resistance, compacting the microstructure, but increasing the autogenous shrinkage of the geopolymers. These improvements are especially apparent in the wet-milled fly ash geopolymers (WFA) due to the pre-depolymerization implemented by wet-milled mechanical forces, and coupled with the activation effect of CH to improve the depolymerization efficiency and condensation reaction. The compressive strength of WF-CH-19 was three times higher than that of FA-CH-19, reaching 29.3 MPa at 28 d, and the compressive strength growth of WF-CH-11 even reached 591.67% at 1 d. Meanwhile, the main chain length (MCL) and Al/Si of calcium silicate hydrates were clearly improved, and pore structure was significantly refined with capillary pore increased from 29.79% to 89.23%. In addition, FA and WFA geopolymers have significant advantages over Portland cement in the environmental impact indicators such as E-energy and E-CO2. (C) 2022 Elsevier Ltd

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20100 - Civil engineering

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Cleaner Production

  • ISSN

    0959-6526

  • e-ISSN

    1879-1786

  • Volume of the periodical

    372

  • Issue of the periodical within the volume

    October 2022

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    39

  • Pages from-to

    nestrankovano

  • UT code for WoS article

    000911719600003

  • EID of the result in the Scopus database

    2-s2.0-85137060814