Theoretical Insight into High-Efficiency Triple-Junction Tandem Solar Cells via the Band Engineering of Antimony Chalcogenides
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F21%3A10247540" target="_blank" >RIV/61989100:27710/21:10247540 - isvavai.cz</a>
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202000800" target="_blank" >https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202000800</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/solr.202000800" target="_blank" >10.1002/solr.202000800</a>
Alternative languages
Result language
angličtina
Original language name
Theoretical Insight into High-Efficiency Triple-Junction Tandem Solar Cells via the Band Engineering of Antimony Chalcogenides
Original language description
Antimony chalcogenides have become a family of promising photoelectric materials for high-efficiency solar cells. To date, single-junction solar cells based on individual antimony selenide or sulfide are dominant and show limited photoelectric conversion efficiency. Therefore, great gaps remain for the multiple junction solar cells. Herein, triple-junction antimony chalcogenides-based solar cells are designed and optimized with a theoretical efficiency of 32.98% through band engineering strategies with Sb2S3/Sb2(S0.7Se0.3)3/Sb2Se3 stacking. The optimum Se content of the mid-cell should be maintained low, i.e., 30% for achieving a low defect density in an absorber layer. Therefore, Sb2(S0.7Se0.3)3-based mid solar cells have contributed to elevate the external quantum efficiency in triple-junction devices by the full utilization of the solar spectrum. In a single-junction solar cell, the bandgap gradient is regulated through the Se content gradient along the depth profile of Sb2(S1MINUS SIGN xSex)3. Besides, an increasing Se content profile provides an additional built-in electric field for boosting hole charge carrier collection. Thus, the high charge carrier generation rate leads to a 17.96% improvement in the conversion efficiency compared with a conventional cell. This work may pave the way to boost the conversion efficiency of antimony chalcogenides-based solar cells to their theoretical limits.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20400 - Chemical engineering
Result continuities
Project
<a href="/en/project/EF16_019%2F0000853" target="_blank" >EF16_019/0000853: Institute of Environmental Technology - Excellent Research</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Solar RRL
ISSN
2367-198X
e-ISSN
—
Volume of the periodical
5
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
8
Pages from-to
1-8
UT code for WoS article
000621809000001
EID of the result in the Scopus database
2-s2.0-85101602611