All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Gradient bandgap modification for highly efficient carrier transport in antimony sulfide-selenide tandem solar cells

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F22%3A10250343" target="_blank" >RIV/61989100:27710/22:10250343 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0927024822003452" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0927024822003452</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.solmat.2022.111926" target="_blank" >10.1016/j.solmat.2022.111926</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Gradient bandgap modification for highly efficient carrier transport in antimony sulfide-selenide tandem solar cells

  • Original language description

    Antimony chalcogenides emerge as a type of efficient material for solar cells. In particular, antimony sulfide-selenide (SbSSe) has attracted significant interests based on their simple preparation, excellent photoelectric performance, and tunable bandgaps. In this study, by applying energy-band engineering technologies, we ach-ieved carrier transport balance and light absorption balance for SbSSe single-and triple-junction solar cells, respectively. First in a single junction solar cell, the photoelectric conversion efficiency (PCE) of SbSSe solar cells is improved from 13.14% to 16.16% with a front-gradient Se content structure compared to a non-gradient Se content SbSSe solar cell. This improvement is attributed to the additional electric field induced by such a gradient bandgap, promoting the carrier motion. Consequently, the balance of carrier transport is realized by adjusting the drift velocities of holes and electrons simultaneously, thereby surpassing carrier recombination and improving the device parameters of short-circuit current density (Jsc) and fill factor (FF). In a next step, an SbSSe of advanced gradient bandgap has been applied as the absorber layer of middle-cell in an antimony chalcogenide based triple-junction solar cell. Based on the high Jsc and FF advantages of SbSSe sub-cells with front-gradient Se content structure, the uniform absorption of sunlight in each sub-cell and current matching of tandem solar cells could be easily realized. Eventually, the PCE of the triple-junction solar cell exhibits an enhancement from 17.34% to 19.51%. Our results demonstrate that the application of energy-band engineering technology can effectively improve device performance, providing theoretical guidance for the refined design and nano-manufacturing development of antimony chalcogenide solar cells.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20400 - Chemical engineering

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000853" target="_blank" >EF16_019/0000853: Institute of Environmental Technology - Excellent Research</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Solar Energy Materials and Solar Cells

  • ISSN

    0927-0248

  • e-ISSN

    1879-3398

  • Volume of the periodical

    246

  • Issue of the periodical within the volume

    6 August 2022

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    nestrankovano

  • UT code for WoS article

    000843000600004

  • EID of the result in the Scopus database