Towards a Scalable Software Defined Network-on-Chip for Next Generation Cloud
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F18%3A10241094" target="_blank" >RIV/61989100:27740/18:10241094 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/1424-8220/18/7/2330" target="_blank" >https://www.mdpi.com/1424-8220/18/7/2330</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s18072330" target="_blank" >10.3390/s18072330</a>
Alternative languages
Result language
angličtina
Original language name
Towards a Scalable Software Defined Network-on-Chip for Next Generation Cloud
Original language description
The rapid evolution of Cloud-based services and the growing interest in deep learning (DL)-based applications is putting increasing pressure on hyperscalers and general purpose hardware designers to provide more efficient and scalable systems. Cloud-based infrastructures must consist of more energy efficient components. The evolution must take place from the core of the infrastructure (i.e., data centers (DCs)) to the edges (Edge computing) to adequately support new/future applications. Adaptability/elasticity is one of the features required to increase the performance-to-power ratios. Hardware-based mechanisms have been proposed to support system reconfiguration mostly at the processing elements level, while fewer studies have been carried out regarding scalable, modular interconnected sub-systems. In this paper, we propose a scalable Software Defined Network-on-Chip (SDNoC)-based architecture. Our solution can easily be adapted to support devices ranging from low-power computing nodes placed at the edge of the Cloud to high-performance many-core processors in the Cloud DCs, by leveraging on a modular design approach. The proposed design merges the benefits of hierarchical network-on-chip (NoC) topologies (via fusing the ring and the 2D-mesh topology), with those brought by dynamic reconfiguration (i.e., adaptation). Our proposed interconnect allows for creating different types of virtualised topologies aiming at serving different communication requirements and thus providing better resource partitioning (virtual tiles) for concurrent tasks. To further allow the software layer controlling and monitoring of the NoC subsystem, a few customised instructions supporting a data-driven program execution model (PXM) are added to the processing element's instruction set architecture (ISA). In general, the data-driven programming and execution models are suitable for supporting the DL applications. We also introduce a mechanism to map a high-level programming language embedding concurrent execution models into the basic functionalities offered by our SDNoC for easing the programming of the proposed system. In the reported experiments, we compared our lightweight reconfigurable architecture to a conventional flattened 2D-mesh interconnection subsystem. Results show that our design provides an increment of the data traffic throughput of 9.5% and a reduction of 2.2 x of the average packet latency, compared to the flattened 2D-mesh topology connecting the same number of processing elements (PEs) (up to 1024 cores). Similarly, power and resource (on FPGA devices) consumption is also low, confirming good scalability of the proposed architecture.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Sensors
ISSN
1424-3210
e-ISSN
—
Volume of the periodical
Volume 18
Issue of the periodical within the volume
Issue 7
Country of publishing house
CH - SWITZERLAND
Number of pages
24
Pages from-to
1-24
UT code for WoS article
000441334300352
EID of the result in the Scopus database
2-s2.0-85050538150