Metrization problem for linear connections and holonomy algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F08%3A00010339" target="_blank" >RIV/61989592:15310/08:00010339 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Metrization problem for linear connections and holonomy algebras
Original language description
We show a method how to decide about metrizability of a manifold endowed with a symmetric connection and how to find all metrics compatible with the given connection in the affirmative case. We compare classical results of Eisenhart based on systems of differential equations with a more algebraic method based on holonomy algebra which works for positive metrics in real analytic case.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archivum Mathematicum
ISSN
0044-8753
e-ISSN
—
Volume of the periodical
44
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
11
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—