On a class of curvature preserving almost geodesic mappings of manifolds with affine connection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F11%3A33141842" target="_blank" >RIV/61989592:15310/11:33141842 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On a class of curvature preserving almost geodesic mappings of manifolds with affine connection
Original language description
In this paper we pay attention to a particular case of almost geodesic mappings of the first type between (differentiable) manifolds with affine connection. We use here classical tensor methods and the apparatus of partial differential equations. We prove that under the mappings under consideration, the invariant geometric object is just the (Riemannian) curvature tensor of the connection. We present the basic equations of the class of mappings under consideration in an equivalent form of the Cauchy system in covariant derivatives.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Aplimat: Journal of Applied Mathematics
ISSN
1337-6365
e-ISSN
—
Volume of the periodical
4
Issue of the periodical within the volume
2
Country of publishing house
SK - SLOVAKIA
Number of pages
6
Pages from-to
145-150
UT code for WoS article
—
EID of the result in the Scopus database
—