All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On canonical almost geodesic mappings which preserve the weyl projective tensor

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F17%3A63517884" target="_blank" >RIV/70883521:28140/17:63517884 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/17:73583349

  • Result on the web

    <a href="http://dx.doi.org/10.3103/S1066369X17060019" target="_blank" >http://dx.doi.org/10.3103/S1066369X17060019</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3103/S1066369X17060019" target="_blank" >10.3103/S1066369X17060019</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On canonical almost geodesic mappings which preserve the weyl projective tensor

  • Original language description

    We study a partial case of canonical almost geodesic mappings of the first type of spaces with affine connection that preserve Weyl projective curvature tensor and certain other tensors. Main equations under consideration are reduced to a closed Cauchy system type in covariant derivatives. Therefore a general solution to these equations depends on a finite number of constants. We submit an example of above mappings between flat spaces. We establish that projective Euclidean and equiaffine spaces form closed classes of spaces with respect to these mappings.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Russian Mathematics

  • ISSN

    1066-369X

  • e-ISSN

  • Volume of the periodical

    61

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    5

  • Pages from-to

    "nestrankovano"

  • UT code for WoS article

    000408849700001

  • EID of the result in the Scopus database

    2-s2.0-85019382281