All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Positive solutions for mixed problems of singular fractional differential equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F12%3A10223871" target="_blank" >RIV/61989592:15310/12:10223871 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1002/mana.201000043" target="_blank" >http://dx.doi.org/10.1002/mana.201000043</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.201000043" target="_blank" >10.1002/mana.201000043</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Positive solutions for mixed problems of singular fractional differential equations

  • Original language description

    The paper is concerned with the existence of positive solutions of singular fractional differential equations satisfying the mixed boundary conditions. The nonlinearities f in the equations are L^q-Carathéodory functions and f(t,x,y,z) may be singular atthe value 0 of its space variables x,y,z. The results are based on combining regularization and sequential techniques with a fixed point theorem on cones. In limit processes the dominated convergence theorem for L^q is used.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

  • Volume of the periodical

    285

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    15

  • Pages from-to

    27-41

  • UT code for WoS article

    000298094100003

  • EID of the result in the Scopus database