Linear regression with compositional explanatory variables
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F12%3A33141575" target="_blank" >RIV/61989592:15310/12:33141575 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/02664763.2011.644268" target="_blank" >http://dx.doi.org/10.1080/02664763.2011.644268</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/02664763.2011.644268" target="_blank" >10.1080/02664763.2011.644268</a>
Alternative languages
Result language
angličtina
Original language name
Linear regression with compositional explanatory variables
Original language description
Compositional explanatory variables should not be directly used in a linear regression model because any inference statistic can become misleading. While various approaches for this problem were proposed, here an approach based on the isometric logratio(ilr) transformation is used. It turns out that the resulting model is easy to handle, and that parameter estimation can be done in like in usual linear regression. Moreover, it is possible to use the ilr variables for inference statistics in order to obtain an appropriate interpretation of the model.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Applied Statistics
ISSN
0266-4763
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
1115-1128
UT code for WoS article
000304428500012
EID of the result in the Scopus database
—