Conformal Klling vector field on a manifold with zero first Betti number
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F12%3A33141837" target="_blank" >RIV/61989592:15310/12:33141837 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Conformal Klling vector field on a manifold with zero first Betti number
Original language description
If on a closed Riemannian manifold with zero first Betti number there exists a conformal Killing vector field X, which is not Killing, then the manifold is conformally diffeomorphic to the Euclidean sphere. If, in addition, the Lie derivative Lg = 0 of the scalar curvature s, then the manifold is isometric to Euclidean sphere.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannian, pseudo-Riemannian and affine differential geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Aplimat 2012 - Proceedings of the International Conference
ISBN
978-80-89313-58-7
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
393-396
Publisher name
Slovenská technická univerzita
Place of publication
Bratislava
Event location
Bratislava
Event date
Feb 7, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—