On canonical almost geodesic mappings of the first type of affinely connected spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F14%3A33151213" target="_blank" >RIV/61989592:15310/14:33151213 - isvavai.cz</a>
Result on the web
<a href="http://download.springer.com/static/pdf/360/art%253A10.3103%252FS1066369X14020017.pdf?auth66=1421656630_4fdd511c7702c463ccf86105dbda7ed5&ext=.pdf" target="_blank" >http://download.springer.com/static/pdf/360/art%253A10.3103%252FS1066369X14020017.pdf?auth66=1421656630_4fdd511c7702c463ccf86105dbda7ed5&ext=.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3103/S1066369X14020017" target="_blank" >10.3103/S1066369X14020017</a>
Alternative languages
Result language
angličtina
Original language name
On canonical almost geodesic mappings of the first type of affinely connected spaces
Original language description
In this paper, we study special cases of canonical almost geodesic mappings of the first type of affinely connected spaces. The basic equations of mappings in question are reduced to a closed system of Cauchy type in covariant derivatives, and the numberof essential parameters in the general solution of this system is estimated. We give an example of such mappings from a flat space onto another flat space. The mappings constructed send straight lines of the first space into parabolas in the second space. These almost geodesicmappings of the first type do not belong to the classes of mappings of the second and third types.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannian, pseudo-Riemannian and affine differential geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Russian Mathematics
ISSN
1066-369X
e-ISSN
—
Volume of the periodical
58
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
5
Pages from-to
1-5
UT code for WoS article
—
EID of the result in the Scopus database
—