Reconstruction of an affine connection in generalized Fermi coordinates
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73579190" target="_blank" >RIV/61989592:15310/17:73579190 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26110/17:PU118538
Result on the web
<a href="http://link.springer.com/article/10.1007/s40840-016-0316-4" target="_blank" >http://link.springer.com/article/10.1007/s40840-016-0316-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40840-016-0316-4" target="_blank" >10.1007/s40840-016-0316-4</a>
Alternative languages
Result language
angličtina
Original language name
Reconstruction of an affine connection in generalized Fermi coordinates
Original language description
On a manifold with affine connection, we introduce special pre-semigeodesic charts which generalize Fermi coordinates. We use a version of the Peano’s–Picard’s-Cauchy-like Theorem on the initial values problem for systems of ODSs. In a fixed pre-semigeodesic chart of a manifold with a symmetric affine connection, we reconstruct, or construct, the connection in some neighborhood from the knowledge of the “initial values”, namely the restriction of the components of connection to a fixed surface S and from some of the components of the curvature tensor R in the full coordinate domain. In Riemannian space, analogous methods are used to retrieve (or construct) the metric tensor of a pseudo-Riemannian manifold in a domain of semigeodesic coordinates from the known restriction of the metric to some non-isotropic hypersurface and some of the components of the curvature tensor of type (0, 4) in the ambient space.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannian, pseudo-Riemannian and affine differential geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of the Malaysian Mathematical Sciences Society
ISSN
0126-6705
e-ISSN
—
Volume of the periodical
40
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
"205–213."
UT code for WoS article
000392066900011
EID of the result in the Scopus database
—