Liouville-type theorems for some classes of Riemannian almost product manifolds and for special mappings of Riemannian manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73583347" target="_blank" >RIV/61989592:15310/17:73583347 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0926224517300335" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0926224517300335</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.difgeo.2017.03.006" target="_blank" >10.1016/j.difgeo.2017.03.006</a>
Alternative languages
Result language
angličtina
Original language name
Liouville-type theorems for some classes of Riemannian almost product manifolds and for special mappings of Riemannian manifolds
Original language description
The main goal of the paper is to prove several Liouville type non-existence theorems for some complete, non-compact Riemannian almost product manifolds, conformal and projective diffeomorphisms and submersions of complete, non-compact Riemannian manifolds. The proofs are based on a generalized Bochner technique: generalized divergence theorems and a generalized maximum principle for complete, non-compact Riemannian manifolds which can be found in [S. Pigola et al., Vanishing and finiteness results in geometric analysis. A generalization of the Bochner technique.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Differential Geometry and Its Applications
ISSN
0926-2245
e-ISSN
—
Volume of the periodical
54
Issue of the periodical within the volume
A
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
111-121
UT code for WoS article
000412256400012
EID of the result in the Scopus database
—