Rotary Diffeomorphism onto Manifolds with Affine Connection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73583840" target="_blank" >RIV/61989592:15310/17:73583840 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.7546/giq-18-2017-130-137" target="_blank" >http://dx.doi.org/10.7546/giq-18-2017-130-137</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7546/giq-18-2017-130-137" target="_blank" >10.7546/giq-18-2017-130-137</a>
Alternative languages
Result language
angličtina
Original language name
Rotary Diffeomorphism onto Manifolds with Affine Connection
Original language description
In this paper we will introduce a newly found knowledge above the existence and the uniqueness of isoperimetric extremals of rotation on two-dimensional (pseudo-) Riemannian manifolds and on surfaces on Euclidean space. We will obtain the fundamental equations of rotary diffeomorphisms from (pseudo-) Riemannian manifolds for twice-differentiable metric tensors onto manifolds with affine connections.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Geometry, Integrability and Quantization
ISBN
—
ISSN
1314-3247
e-ISSN
neuvedeno
Number of pages
8
Pages from-to
"130–137"
Publisher name
Avangard Prima
Place of publication
Sofia
Event location
Varna
Event date
Jun 3, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000435119200006