Rotary Mappings of Surfaces of Revolution
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73585026" target="_blank" >RIV/61989592:15310/17:73585026 - isvavai.cz</a>
Result on the web
<a href="http://mitav.unob.cz/data/MITAV%202017%20Proceedings.pdf" target="_blank" >http://mitav.unob.cz/data/MITAV%202017%20Proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Rotary Mappings of Surfaces of Revolution
Original language description
Presented paper concerns with rotary mappings of surfaces of revolution. It is proved that any surface of revolution with differentiable Gaussian curvature admits rotary mapping. Furthermore, same holds even for (pseudo-) Riemannian spaces.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Mathematics, Information Technologies and Applied Sciences 2017: post-conference proceedings of extended versions of selected papers
ISBN
978-80-7582-026-6
ISSN
—
e-ISSN
neuvedeno
Number of pages
9
Pages from-to
208-216
Publisher name
Univerzita obrany
Place of publication
Brno
Event location
Brno
Event date
Feb 15, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—