Fast-tracking application for Traffic Signs Recognition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73587378" target="_blank" >RIV/61989592:15310/18:73587378 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/content/pdf/10.1007%2F978-3-030-00692-1_34.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2F978-3-030-00692-1_34.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-00692-1_34" target="_blank" >10.1007/978-3-030-00692-1_34</a>
Alternative languages
Result language
angličtina
Original language name
Fast-tracking application for Traffic Signs Recognition
Original language description
Traffic sign recognition is among the major tasks on driver assistance system. The convolutional neural networks (CNN) play an important role to find a good accuracy of traffic sign recognition in order to limit the dangerous acts of the driver and to respect the road laws. The accuracy of the Detection and Classification determines how powerful of the technique used is. Whereas SSD Multibox (Single Shot MultiBox Detector) is an approach based on convolutional neural networks paradigm, it is adopted in this paper, firstly because we can rely on it for the real-time applications, this approach runs on 59 FPS (frame per second). Secondly, in order to optimize difficulties in multiple layers of DeeperCNN to provide a finer accuracy. Moreover, our experiment on German traffic sign recognition benchmark (GTSRB) demonstrated that the proposed approach could achieve competitive results (83.2% in 140.000 learning steps) using GPU parallel system and Tensorflow.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EE2.3.20.0170" target="_blank" >EE2.3.20.0170: Building of Research Team in the Field of Environmental Modeling and the Use of Geoinformation Systems with the Consequence in Participation in International Networks and Programs</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science - Proceedings of the International Conference on Computer Vision and Graphics ICCVG 2018
ISBN
978-3-030-00692-1
ISSN
—
e-ISSN
neuvedeno
Number of pages
12
Pages from-to
385-396
Publisher name
Springer
Place of publication
Heidelberg
Event location
Warszawa
Event date
Sep 17, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—