All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fast-tracking application for Traffic Signs Recognition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73587378" target="_blank" >RIV/61989592:15310/18:73587378 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/content/pdf/10.1007%2F978-3-030-00692-1_34.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2F978-3-030-00692-1_34.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-00692-1_34" target="_blank" >10.1007/978-3-030-00692-1_34</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fast-tracking application for Traffic Signs Recognition

  • Original language description

    Traffic sign recognition is among the major tasks on driver assistance system. The convolutional neural networks (CNN) play an important role to find a good accuracy of traffic sign recognition in order to limit the dangerous acts of the driver and to respect the road laws. The accuracy of the Detection and Classification determines how powerful of the technique used is. Whereas SSD Multibox (Single Shot MultiBox Detector) is an approach based on convolutional neural networks paradigm, it is adopted in this paper, firstly because we can rely on it for the real-time applications, this approach runs on 59 FPS (frame per second). Secondly, in order to optimize difficulties in multiple layers of DeeperCNN to provide a finer accuracy. Moreover, our experiment on German traffic sign recognition benchmark (GTSRB) demonstrated that the proposed approach could achieve competitive results (83.2% in 140.000 learning steps) using GPU parallel system and Tensorflow.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EE2.3.20.0170" target="_blank" >EE2.3.20.0170: Building of Research Team in the Field of Environmental Modeling and the Use of Geoinformation Systems with the Consequence in Participation in International Networks and Programs</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science - Proceedings of the International Conference on Computer Vision and Graphics ICCVG 2018

  • ISBN

    978-3-030-00692-1

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    12

  • Pages from-to

    385-396

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Warszawa

  • Event date

    Sep 17, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article