All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A multivalued version of the Block-Sharkovsky theorem applicable to differential equations on the circle

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73587814" target="_blank" >RIV/61989592:15310/18:73587814 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15410/18:73587814

  • Result on the web

    <a href="http://dx.doi.org/10.1142/S0218127418501420" target="_blank" >http://dx.doi.org/10.1142/S0218127418501420</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0218127418501420" target="_blank" >10.1142/S0218127418501420</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A multivalued version of the Block-Sharkovsky theorem applicable to differential equations on the circle

  • Original language description

    A multivalued version of the well-known (Sharkovsky type) Block cycle coexistence theorem is, on the basis of our former results, completed and applied to differential equations and inclusions. The deterministic results are also randomized which allows us, besides other things, to eliminate some exceptional absent periodic dynamics. In this way, instead of at most two possible deterministic exceptional cases (w.r.t. the standard Block theorem), only one possible random exception can occur, provided the forcing period n=2^m⋅3, m∈N∪{0}. On the other hand, the application to random differential equations and inclusions is not so effective in general.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS

  • ISSN

    0218-1274

  • e-ISSN

  • Volume of the periodical

    28

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    SG - SINGAPORE

  • Number of pages

    15

  • Pages from-to

    "1850142-1"-"1850142-15"

  • UT code for WoS article

    000448307500016

  • EID of the result in the Scopus database

    2-s2.0-85055629499