The Loomis-Sikorski theorem for EMV-algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73590160" target="_blank" >RIV/61989592:15310/19:73590160 - isvavai.cz</a>
Result on the web
<a href="https://www.cambridge.org/core/services/aop-cambridge-core/content/view/ABE763DAEBA7D8B1A7987D0405CC86CD/S1446788718000101a.pdf/loomissikorski_theorem_for_emv_algebras.pdf" target="_blank" >https://www.cambridge.org/core/services/aop-cambridge-core/content/view/ABE763DAEBA7D8B1A7987D0405CC86CD/S1446788718000101a.pdf/loomissikorski_theorem_for_emv_algebras.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1446788718000101" target="_blank" >10.1017/S1446788718000101</a>
Alternative languages
Result language
angličtina
Original language name
The Loomis-Sikorski theorem for EMV-algebras
Original language description
An EMV-algebra resembles an MV-algebra in which a top element is not guaranteed. For -complete -algebras, we prove an analogue of the Loomis-Sikorski theorem showing that every -complete -algebra is a -homomorphic image of an -tribe of fuzzy sets where all algebraic operations are defined by points. To prove it, some topological properties of the state-morphism space and the space of maximal ideals are established.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA15-15286S" target="_blank" >GA15-15286S: Algebraic, many-valued and quantum structures for uncertainty modelling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY
ISSN
1446-7887
e-ISSN
—
Volume of the periodical
106
Issue of the periodical within the volume
2
Country of publishing house
AU - AUSTRALIA
Number of pages
35
Pages from-to
200-234
UT code for WoS article
000460296200004
EID of the result in the Scopus database
2-s2.0-85052935132