Coexistence of periodic solutions with various periods of impulsive differential equations and inclusions on tori via Poincaré operators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73595051" target="_blank" >RIV/61989592:15310/19:73595051 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0166864118303912" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0166864118303912</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.topol.2019.01.008" target="_blank" >10.1016/j.topol.2019.01.008</a>
Alternative languages
Result language
angličtina
Original language name
Coexistence of periodic solutions with various periods of impulsive differential equations and inclusions on tori via Poincaré operators
Original language description
The coexistence of subharmonic periodic solutions of various orders is investigated to the first-order vector system of impulsive (upper-) Carathéodory differential equations and inclusions on tori. As the main tool, our recent Sharkovsky-type results for multivalued maps on tori are applied via the associated Poincaré translation operators along the trajectories of given systems. The solvability criteria are formulated, under natural bi-periodicity assumptions imposed on the right-hand sides, in terms of the Lefschetz numbers of admissible impulsive maps. Since the criteria become effective on the circle, the main general theorem can be improved and reformulated there in a more transparent way. The obtained results can be regarded in a certain sense as a nontrivial extension of those due to Poincaré, Denjoy and van Kampen.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topology and its Applications
ISSN
0166-8641
e-ISSN
—
Volume of the periodical
255
Issue of the periodical within the volume
MAR
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
126-140
UT code for WoS article
000459528900008
EID of the result in the Scopus database
2-s2.0-85060841324