Topological entropy for impulsive differential equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73603347" target="_blank" >RIV/61989592:15310/20:73603347 - isvavai.cz</a>
Result on the web
<a href="http://www.math.u-szeged.hu/ejqtde/p8927.pdf" target="_blank" >http://www.math.u-szeged.hu/ejqtde/p8927.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14232/ejqtde.2020.1.68" target="_blank" >10.14232/ejqtde.2020.1.68</a>
Alternative languages
Result language
angličtina
Original language name
Topological entropy for impulsive differential equations
Original language description
A positive topological entropy is examined for impulsive differential equations via the associated Poincaré translation operators on compact subsets of Euclidean spaces and, in particular, on tori. We will show the conditions under which the impulsive mapping has the forcing property in the sense that its positive topological entropy implies the same for its composition with the Poincaré translation operator along the trajectories of given systems. It allows us to speak about chaos for impulsive differential equations under consideration. In particular, on tori, there are practically no implicit restrictions for such a forcing property. Moreover, the asymptotic Nielsen number (which is in difference to topological entropy a homotopy invariant) can be used there effectively for the lower estimate of topological entropy. Several illustrative examples are supplied.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Qualitative Theory of Differential Equations
ISSN
1417-3875
e-ISSN
—
Volume of the periodical
2020
Issue of the periodical within the volume
68
Country of publishing house
HU - HUNGARY
Number of pages
15
Pages from-to
1-15
UT code for WoS article
000601296600001
EID of the result in the Scopus database
2-s2.0-85098332816