All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Topological entropy for impulsive differential equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73603347" target="_blank" >RIV/61989592:15310/20:73603347 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.math.u-szeged.hu/ejqtde/p8927.pdf" target="_blank" >http://www.math.u-szeged.hu/ejqtde/p8927.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14232/ejqtde.2020.1.68" target="_blank" >10.14232/ejqtde.2020.1.68</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Topological entropy for impulsive differential equations

  • Original language description

    A positive topological entropy is examined for impulsive differential equations via the associated Poincaré translation operators on compact subsets of Euclidean spaces and, in particular, on tori. We will show the conditions under which the impulsive mapping has the forcing property in the sense that its positive topological entropy implies the same for its composition with the Poincaré translation operator along the trajectories of given systems. It allows us to speak about chaos for impulsive differential equations under consideration. In particular, on tori, there are practically no implicit restrictions for such a forcing property. Moreover, the asymptotic Nielsen number (which is in difference to topological entropy a homotopy invariant) can be used there effectively for the lower estimate of topological entropy. Several illustrative examples are supplied.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronic Journal of Qualitative Theory of Differential Equations

  • ISSN

    1417-3875

  • e-ISSN

  • Volume of the periodical

    2020

  • Issue of the periodical within the volume

    68

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    15

  • Pages from-to

    1-15

  • UT code for WoS article

    000601296600001

  • EID of the result in the Scopus database

    2-s2.0-85098332816