Topological entropy and differential equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73618146" target="_blank" >RIV/61989592:15310/23:73618146 - isvavai.cz</a>
Result on the web
<a href="http://emis.muni.cz/journals/AM/23-1/Andres.pdf" target="_blank" >http://emis.muni.cz/journals/AM/23-1/Andres.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5817/AM2023-1-3" target="_blank" >10.5817/AM2023-1-3</a>
Alternative languages
Result language
angličtina
Original language name
Topological entropy and differential equations
Original language description
On the background of a brief survey panorama of results on the topic in the title, one new theorem is presented concerning a positive topological entropy (i.e. topological chaos) for the impulsive differential equations on the Cartesian product of compact intervals, which is positively invariant under the composition of the associated Poincaré translation operator with a multivalued upper semicontinuous impulsive mapping.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archivum Mathematicum
ISSN
1212-5059
e-ISSN
1212-5059
Volume of the periodical
59
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
8
Pages from-to
3-10
UT code for WoS article
000937071400001
EID of the result in the Scopus database
2-s2.0-85150918071