Topological entropy of composition and impulsive differential equations satisfying a uniqueness condition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73612504" target="_blank" >RIV/61989592:15310/22:73612504 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S096007792200011X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S096007792200011X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chaos.2022.111800" target="_blank" >10.1016/j.chaos.2022.111800</a>
Alternative languages
Result language
angličtina
Original language name
Topological entropy of composition and impulsive differential equations satisfying a uniqueness condition
Original language description
The impulsive differential equations are examined via the associated Poincaré translation operators in terms of topological entropy. The crucial role is played by the entropy analysis of the compositions of Poincaré’s operators with the impulsive maps. For the scalar (one-dimensional) problems, the lower entropy estimations can be effectively obtained by means of horseshoes. For the vector (higher-dimensional) problems, the situation becomes more delicate and requires rather sophisticated techniques. Five main theorems are presented about a positive topological entropy (i.e. topological chaos) for given impulsive problems. For vector linear homogeneous differential equations with constant coefficients and isometric impulses, the zero entropy is deduced under commutativity restrictions imposed on the components of a mentioned composition. Several illustrative examples and numerical simulations are supplied.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
CHAOS SOLITONS & FRACTALS
ISSN
0960-0779
e-ISSN
1873-2887
Volume of the periodical
156
Issue of the periodical within the volume
MAR
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
"111800-1"-"111800-11"
UT code for WoS article
000783081700004
EID of the result in the Scopus database
2-s2.0-85122707699