Rotary mappings of spaces with affine connection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597298" target="_blank" >RIV/61989592:15310/19:73597298 - isvavai.cz</a>
Result on the web
<a href="https://www.pmf.ni.ac.rs/filomat-content/2019/33-4/33-4-16-9373.pdf" target="_blank" >https://www.pmf.ni.ac.rs/filomat-content/2019/33-4/33-4-16-9373.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2298/FIL1904147M" target="_blank" >10.2298/FIL1904147M</a>
Alternative languages
Result language
angličtina
Original language name
Rotary mappings of spaces with affine connection
Original language description
This paper concerns with rotary mappings of two-dimensional spaces with an affine connection onto (pseudo-) Riemannian spaces. The results obtained in the theory of rotary mappings are further developed. We prove that any (pseudo-) Riemannian space admits rotary mapping. There are also presented certain properties from which yields the existence of these rotary mappings.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Filomat
ISSN
0354-5180
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
4
Country of publishing house
RS - THE REPUBLIC OF SERBIA
Number of pages
6
Pages from-to
"1147–1152"
UT code for WoS article
000496191800017
EID of the result in the Scopus database
2-s2.0-85078266068