Infinitesimal rotary transformation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597299" target="_blank" >RIV/61989592:15310/19:73597299 - isvavai.cz</a>
Result on the web
<a href="https://www.pmf.ni.ac.rs/filomat-content/2019/33-4/33-4-17-9374.pdf" target="_blank" >https://www.pmf.ni.ac.rs/filomat-content/2019/33-4/33-4-17-9374.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2298/FIL1904153R" target="_blank" >10.2298/FIL1904153R</a>
Alternative languages
Result language
angličtina
Original language name
Infinitesimal rotary transformation
Original language description
The paper is devoted to further study of a certain type of infinitesimal transformations of twodimensional (pseudo-) Riemannian spaces, which are called rotary. An infinitesimal transformation is called rotary if it maps any geodesic on (pseudo-) Riemannian space onto an isoperimetric extremal of rotation in their principal parts on (pseudo-) Riemannian space. We study basic equations of the infinitesimal rotary transformations in detail and obtain the simpler fundamental equations of these transformations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Filomat
ISSN
0354-5180
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
4
Country of publishing house
RS - THE REPUBLIC OF SERBIA
Number of pages
5
Pages from-to
"1153–1157"
UT code for WoS article
000496191800018
EID of the result in the Scopus database
2-s2.0-85078237340