An example of Lichnerowicz-type Laplacian
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73602015" target="_blank" >RIV/61989592:15310/20:73602015 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007%2Fs10455-020-09714-9" target="_blank" >https://link.springer.com/article/10.1007%2Fs10455-020-09714-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10455-020-09714-9" target="_blank" >10.1007/s10455-020-09714-9</a>
Alternative languages
Result language
angličtina
Original language name
An example of Lichnerowicz-type Laplacian
Original language description
We consider the Sampson Laplacian acting on covariant symmetric tensors on a Riemannian manifold. This operator is an example of the Lichnerowicz-type Laplacian. It is of fundamental importance in mathematical physics and appears in many problems in Riemannian geometry including the theories of infinitesimal Einstein deformations, the stability of Einstein manifolds and the Ricci flow. We study the Sampson Laplacian using the analytical method, due to Bochner, of proving vanishing theorems for the null space of a Laplace operator admitting Weitzenböck decomposition and further of estimating its lowest eigenvalue. In addition, we also survey a series of results that we obtained earlier.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY
ISSN
0232-704X
e-ISSN
—
Volume of the periodical
58
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
16
Pages from-to
19-34
UT code for WoS article
000541848400002
EID of the result in the Scopus database
2-s2.0-85085496636