Nielsen number, impulsive differential equations and problem of Jean Leray
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73604914" target="_blank" >RIV/61989592:15310/20:73604914 - isvavai.cz</a>
Result on the web
<a href="https://obd.upol.cz/id_publ/333184800" target="_blank" >https://obd.upol.cz/id_publ/333184800</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.12775/TMNA.2019.112" target="_blank" >10.12775/TMNA.2019.112</a>
Alternative languages
Result language
angličtina
Original language name
Nielsen number, impulsive differential equations and problem of Jean Leray
Original language description
We will show that, unlike to usual (i.e. non-impulsive) differential equations, the Nielsen theory results for single-valued as well as multivalued maps on tori can be effectively applied to impulsive differential equations and inclusions. With this respect, two main aims will be focused, namely: (i) multiplicity results for harmonic periodic solutions, (ii) the coexistence of subharmonic periodic solutions with various periods. In both cases, we will try to contribute at least partly to the problem posed already in 1950 by Jean Leray. A dynamic complexity of the related maps, measured in terms of entropy, will be also examined.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topological Methods in Nonlinear Analysis
ISSN
1230-3429
e-ISSN
—
Volume of the periodical
56
Issue of the periodical within the volume
2
Country of publishing house
PL - POLAND
Number of pages
18
Pages from-to
383-400
UT code for WoS article
000617041200001
EID of the result in the Scopus database
2-s2.0-85091351364