All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Rotary mappings and projections of a sphere

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73607698" target="_blank" >RIV/61989592:15310/21:73607698 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1134%2FS0001434621070166" target="_blank" >https://link.springer.com/article/10.1134%2FS0001434621070166</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1134/S0001434621070166" target="_blank" >10.1134/S0001434621070166</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Rotary mappings and projections of a sphere

  • Original language description

    Rotary mappings of two-dimensional spaces were studied by many authors. In this paper, we show that parallel and central projections of a sphere onto a plane or a sphere are rotary mappings. These projections also realize the rotary transformations of a sphere. In particular, we construct rotary mappings between compact spaces &quot;in the large.&quot; Note that the classical stereographic projection is a rotary mapping as well.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Notes

  • ISSN

    1067-9073

  • e-ISSN

  • Volume of the periodical

    110

  • Issue of the periodical within the volume

    1-2

  • Country of publishing house

    RU - RUSSIAN FEDERATION

  • Number of pages

    4

  • Pages from-to

    152-155

  • UT code for WoS article

    000687705200016

  • EID of the result in the Scopus database

    2-s2.0-85113783485