Geodesic mappings of equiaffine and Ricci symmetric spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73607701" target="_blank" >RIV/61989592:15310/21:73607701 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1134%2FS0001434621070312" target="_blank" >https://link.springer.com/article/10.1134%2FS0001434621070312</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S0001434621070312" target="_blank" >10.1134/S0001434621070312</a>
Alternative languages
Result language
angličtina
Original language name
Geodesic mappings of equiaffine and Ricci symmetric spaces
Original language description
Rotary mappings of two-dimensional spaces were studied by many authors. In this paper, we show that parallel and central projections of a sphere onto a plane or a sphere are rotary mappings. These projections also realize the rotary transformations of a sphere. In particular, we construct rotary mappings between compact spaces "in the large." Note that the classical stereographic projection is a rotary mapping as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MATHEMATICAL NOTES
ISSN
0001-4346
e-ISSN
—
Volume of the periodical
110
Issue of the periodical within the volume
1-2
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
4
Pages from-to
293-296
UT code for WoS article
000687705200031
EID of the result in the Scopus database
2-s2.0-85113810880