Utilisation of EU Employment Data in Lecturing Data Mining Course
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73609750" target="_blank" >RIV/61989592:15310/21:73609750 - isvavai.cz</a>
Result on the web
<a href="https://obd.upol.cz/id_publ/333189637" target="_blank" >https://obd.upol.cz/id_publ/333189637</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-77445-5_55" target="_blank" >10.1007/978-3-030-77445-5_55</a>
Alternative languages
Result language
angličtina
Original language name
Utilisation of EU Employment Data in Lecturing Data Mining Course
Original language description
This article describes the utilisation of Eurostat employment data in the Data Mining course. The course is the obligatory course for a master degree Geoinformatics and Cartograhy study program at Palacký University in Olomouc. The article shows an example of the implementation of several methods like correlation, principal components analysis, k-means and hierarchical clustering on the same dataset in the course's teaching. The processing data in the Orange software and following interpretation of results gained by these methods are explained to students. Moreover, students create the MS PowerBI dashboard based on the same data. Teacher final finding is that the use of the current European data is for students more illustrative and increases their awareness of the status of employment in European countries within economic activities categorised by NACE. Practical processing of real data brings a deeper understanding of the lectured topics. Presented outputs, such as clustering, discover similar countries according to the same sector of employment.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10511 - Environmental sciences (social aspects to be 5.7)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Intelligence in Intelligent Systems
ISBN
978-3-030-77445-5
ISSN
2367-3370
e-ISSN
—
Number of pages
16
Pages from-to
601-616
Publisher name
Springer
Place of publication
Cham
Event location
Zlin
Event date
Apr 1, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—