On information geometry methods for data analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73626814" target="_blank" >RIV/61989592:15310/24:73626814 - isvavai.cz</a>
Result on the web
<a href="https://www.researchgate.net/publication/385837561_On_Information_Geometry_Methods_for_Data_Analysis" target="_blank" >https://www.researchgate.net/publication/385837561_On_Information_Geometry_Methods_for_Data_Analysis</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7546/giq-29-2024-11-22" target="_blank" >10.7546/giq-29-2024-11-22</a>
Alternative languages
Result language
angličtina
Original language name
On information geometry methods for data analysis
Original language description
The paper is devoted to exploration of statistical manifolds. In particular we consider exponential family manifolds, its metrics and connections. We proved that a statistical manifold does not admit nontrivial geodesic mapping between the Riemannian connection and any alpha-connection. Besides, a statistical manifold does not admit a Weyl connection which coincides with any alpha-connection. We obtain also that the Fisher information matrix calculated for a mixture family is a Hessian metric.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Geometry, Integrability and Quantization
ISSN
1314-3247
e-ISSN
2367-7147
Volume of the periodical
29
Issue of the periodical within the volume
SEP
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
11-22
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85210918515