All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On General Solutions of Sinyukov Equations on Two-Dimensional Equidistant (pseudo-)Riemannian Spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73627658" target="_blank" >RIV/61989592:15310/24:73627658 - isvavai.cz</a>

  • Result on the web

    <a href="https://obd.upol.cz/id_publ/333207545" target="_blank" >https://obd.upol.cz/id_publ/333207545</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-50586-7_9" target="_blank" >10.1007/978-3-031-50586-7_9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On General Solutions of Sinyukov Equations on Two-Dimensional Equidistant (pseudo-)Riemannian Spaces

  • Original language description

    The paper is devoted to study of Sinyukov equations on two-dimensional equidistant (pseudo-) Riemannian spaces. The general solution of Sinyukov equations is found beyond these spaces under minimal requirements for the differentiability of the studied objects.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Springer Proceedings in Mathematics and Statistics

  • ISBN

    978-3-031-50585-0

  • ISSN

    2194-1009

  • e-ISSN

    2194-1017

  • Number of pages

    13

  • Pages from-to

    209-221

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Cham

  • Event location

    Haifa, Israel

  • Event date

    May 11, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article