All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Estimation of Selected Production Functions Using Starting Parameters Given by Stochastic Funnel Algorithm

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F20%3A43918274" target="_blank" >RIV/62156489:43110/20:43918274 - isvavai.cz</a>

  • Result on the web

    <a href="https://mme2020.mendelu.cz/wcd/w-rek-mme/mme2020_conference_proceedings_final.pdf" target="_blank" >https://mme2020.mendelu.cz/wcd/w-rek-mme/mme2020_conference_proceedings_final.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Estimation of Selected Production Functions Using Starting Parameters Given by Stochastic Funnel Algorithm

  • Original language description

    In this paper we deal with the problem of finding starting parameters for numerical methods designed for estimation of nonlinear production functions. Appropriateness of these starting parameters has a major impact on success of inding stable final parameters estimation. Bad starting parameters can cause the estimate of production function unacceptable from an economic point of view, or divergence of the estimation iteration process. We are focused on two approaches of searching starting parameters: the first one is based on establishing &apos;self-starting&apos; models and searching preliminary estimates systematically in grid or by random shooting. As the second approach we use so-called stochastic funnel algorithm. We verify deployment of this algorithm for production functions and extend its usage with the possibility of searching for negative parameters. To assess mentioned methods we provide simulation study based on selected production functions. Our results show that stochastic funnel algorithm is able to give starting parameters comparable to the tradition methods for the CES type production functions, and visibly better for the Sato production function.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    50202 - Applied Economics, Econometrics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Mathematical Methods in Economics 2020: Conference Proceedings

  • ISBN

    978-80-7509-734-7

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    630-635

  • Publisher name

    Mendelova univerzita v Brně

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Sep 9, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000668460800096