All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

FasL Modulates Expression of Mmp2 in Osteoblasts

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62157124%3A16170%2F18%3A43877237" target="_blank" >RIV/62157124:16170/18:43877237 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985904:_____/18:00494328

  • Result on the web

    <a href="http://dx.doi.org/10.3389/fphys.2018.01314" target="_blank" >http://dx.doi.org/10.3389/fphys.2018.01314</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fphys.2018.01314" target="_blank" >10.3389/fphys.2018.01314</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    FasL Modulates Expression of Mmp2 in Osteoblasts

  • Original language description

    FasL is a well-known actor in the apoptotic pathways but recent reports have pointed to its important novel roles beyond cell death, as observed also for bone cells. This is supported by non-apoptotic appearance of FasL during osteogenesis and by significant bone alterations unrelated to apoptosis in FasL deficient (gld) mice. The molecular mechanism behind this novel role has not yet been revealed. In this report, intramembranous bone, where osteoblasts differentiate directly from mesenchymal precursors without intermediary chondrogenic step, was investigated. Mouse mandibular bone surrounding the first lower molar was used as a model. The stage where a complex set of bone cells (osteoblasts, osteocytes, osteoclasts) is first present during development was selected for an initial examination. Immunohistochemical staining detected FasL in non-apoptotic cells at this stage. Further, FasL deficient vs. wild type samples subjected to osteogenic PCR Array analysis displayed a significantly decreased expression of Mmp2 in gld bone. To examine the possibility of this novel FasL-Mmp2 relationship, intramembranous bone-derived osteoblastic cells (MC3T3-E1) were treated with anti-FasL antibody or rmFasL. Indeed, the FasL neutralization caused a decreased expression of Mmp2 and rmFasL added to the cells resulted in the opposite effect. Since Mmp2(-/-) mice display age-dependent alterations in the intramembranous bone, early stages of gld mandibular bone were examined and age-dependent phenotype was confirmed also in gld mice. Taken together, the present in vivo and in vitro findings point to a new non-apoptotic function of FasL in bone development associated with Mmp2 expression.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Frontiers in Physiology

  • ISSN

    1664-042X

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    SEP

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    11

  • Pages from-to

  • UT code for WoS article

    000445064500001

  • EID of the result in the Scopus database

    2-s2.0-85055131663