Tolerance types of interval eigenvectors in max-plus algebra
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F16%3A50005048" target="_blank" >RIV/62690094:18450/16:50005048 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ins.2016.05.023" target="_blank" >http://dx.doi.org/10.1016/j.ins.2016.05.023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2016.05.023" target="_blank" >10.1016/j.ins.2016.05.023</a>
Alternative languages
Result language
angličtina
Original language name
Tolerance types of interval eigenvectors in max-plus algebra
Original language description
Max-plus algebra plays a key role in the study of discrete event systems in connection with optimization problems such as scheduling or project management in which the objective function depends on the operations maximum and plus. The steady states of such systems correspond to the eigenvectors of max-plus matrices, therefore the investigation of the properties of these eigenvectors is important for applications. Three recognition problems connected with the interval eigenproblem in max-plus algebras have been solved. Polynomial algorithms have been described for recognizing the strong tolerability and the tolerability of an interval eigenvector with respect to an interval matrix. Recognizing weak tolerability has been reduced to solving a set of polynomially many instances of an LP minimization problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Information sciences
ISSN
0020-0255
e-ISSN
—
Volume of the periodical
367
Issue of the periodical within the volume
November
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
14-27
UT code for WoS article
000382794400002
EID of the result in the Scopus database
—