Tolerance and weak tolerance of interval eigenvectors in fuzzy algebra
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50016964" target="_blank" >RIV/62690094:18450/21:50016964 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0165011420303146?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011420303146?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2020.08.008" target="_blank" >10.1016/j.fss.2020.08.008</a>
Alternative languages
Result language
angličtina
Original language name
Tolerance and weak tolerance of interval eigenvectors in fuzzy algebra
Original language description
The paper investigates the properties of steady states of discrete events systems (DES) described by max-min matrices and vectors with interval coefficients. The characteristics of the eigenspace structure and polynomial-time algorithms for recognition of tolerable and weakly-tolerable interval eigenvectors in max-min algebra are described. The research is a continuation of an earlier investigation concerning strongly-tolerable interval eigenvectors.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA18-01246S" target="_blank" >GA18-01246S: Non-standard optimization and decision-making methods in management processes</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy sets and systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
410
Issue of the periodical within the volume
May
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
60-74
UT code for WoS article
000624958300005
EID of the result in the Scopus database
2-s2.0-85089888025