All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Strong Tolerance and Strong Universality of Interval Eigenvectors in a Max-Lukasiewicz Algebra

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50016979" target="_blank" >RIV/62690094:18450/20:50016979 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2227-7390/8/9/1504/htm" target="_blank" >https://www.mdpi.com/2227-7390/8/9/1504/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math8091504" target="_blank" >10.3390/math8091504</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Strong Tolerance and Strong Universality of Interval Eigenvectors in a Max-Lukasiewicz Algebra

  • Original language description

    The investigation of the steady states in a discrete events system (DES) leads to the study of the eigenvectors of the transition matrix in the corresponding max-algebra. In real systems, the input values are usually taken to be in some interval. This paper is oriented to the investigation of strong, strongly tolerable, and strongly universal interval eigenvectors in a max-Łukasiewicz algebra. The main method used in this paper is based on max-Ł linear combinations of matrices and vectors. Necessary and sufficient conditions for the recognition of strongly tolerable, and strongly universal eigenvectors have been found. The theoretical results are illustrated by numerical examples.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-01246S" target="_blank" >GA18-01246S: Non-standard optimization and decision-making methods in management processes</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    19

  • Pages from-to

    "Article Number: 1504"

  • UT code for WoS article

    000580416300001

  • EID of the result in the Scopus database