Strong Tolerance and Strong Universality of Interval Eigenvectors in a Max-Lukasiewicz Algebra
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F20%3A50016979" target="_blank" >RIV/62690094:18450/20:50016979 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/8/9/1504/htm" target="_blank" >https://www.mdpi.com/2227-7390/8/9/1504/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8091504" target="_blank" >10.3390/math8091504</a>
Alternative languages
Result language
angličtina
Original language name
Strong Tolerance and Strong Universality of Interval Eigenvectors in a Max-Lukasiewicz Algebra
Original language description
The investigation of the steady states in a discrete events system (DES) leads to the study of the eigenvectors of the transition matrix in the corresponding max-algebra. In real systems, the input values are usually taken to be in some interval. This paper is oriented to the investigation of strong, strongly tolerable, and strongly universal interval eigenvectors in a max-Łukasiewicz algebra. The main method used in this paper is based on max-Ł linear combinations of matrices and vectors. Necessary and sufficient conditions for the recognition of strongly tolerable, and strongly universal eigenvectors have been found. The theoretical results are illustrated by numerical examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA18-01246S" target="_blank" >GA18-01246S: Non-standard optimization and decision-making methods in management processes</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
9
Country of publishing house
CH - SWITZERLAND
Number of pages
19
Pages from-to
"Article Number: 1504"
UT code for WoS article
000580416300001
EID of the result in the Scopus database
—