All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Improving Class Imbalance Detection And Classification Performance: A New Potential of Combination Resample and Random Forest

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50020126" target="_blank" >RIV/62690094:18450/22:50020126 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ICOCO56118.2022.10031922" target="_blank" >http://dx.doi.org/10.1109/ICOCO56118.2022.10031922</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICOCO56118.2022.10031922" target="_blank" >10.1109/ICOCO56118.2022.10031922</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Improving Class Imbalance Detection And Classification Performance: A New Potential of Combination Resample and Random Forest

  • Original language description

    Data mining is a knowledge discovery of the data that extracts and discovers patterns and relationships to predict outcomes. Class imbalance is one of the obstacles that can drive misclassification. The class imbalance affected the result of classification machine learning. The classification technique can divide the data into the given class target. This research focuses on four pre-processing methods: SMOTE, Spread Subsample, Class Balancer, and Resample. These methods can help to clean the data before undergoing the classification techniques. Resample shows the best result for solving the imbalance problem with 41.321 for Mean and Standard Deviation, 64.101. Besides, this research involves six classification techniques: Naïve Bayes, BayesNet, Random Forest, Random Tree, Logistics, and Multilayer Perceptron. Indeed, the combination of Resample and Random Forest has the best result of Precision, 0.941, and ROC Area is 0.983.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2022 IEEE International Conference on Computing (ICOCO)

  • ISBN

    978-1-66548-996-6

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    316-323

  • Publisher name

    IEEE

  • Place of publication

    New Jersey

  • Event location

    Kota Kinabalu, Malaysia

  • Event date

    Nov 14, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article