kappa-deformed covariant quantum phase spaces as Hopf algebroids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F15%3A50004051" target="_blank" >RIV/62690094:18470/15:50004051 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0370269315007170" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0370269315007170</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physletb.2015.09.042" target="_blank" >10.1016/j.physletb.2015.09.042</a>
Alternative languages
Result language
angličtina
Original language name
kappa-deformed covariant quantum phase spaces as Hopf algebroids
Original language description
We consider the general D = 4 (10 + 10)-dimensional kappa-deformed quantum phase space as given by Heisenberg double H of D = 4 kappa-deformed Poincare-Hopf algebra H. The standard (4 + 4)-dimensional K-deformed covariant quantum phase space spanned by kappa-deformed Minkowski coordinates and commuting momenta generators (($) over cap (mu),($) over cap (mu)) is obtained as the subalgebra of H. We study further the property that Heisenberg double defines particular quantum spaces with Hopf algebroid structure. We calculate by using purely algebraic methods the explicit Hopf algebroid structure of standard kappa-deformed quantum covariant phase space in Majid-Ruegg bicrossproduct basis. The coproducts for Hopf algebroids are not unique, determined modulothe coproduct gauge freedom. Finally we consider the interpretation of the algebraic description of quantum phase spaces as Hopf algebroids. (C) 2015 Published by Elsevier B.V.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physics letters B
ISSN
0370-2693
e-ISSN
—
Volume of the periodical
750
Issue of the periodical within the volume
12.11.2015
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
6
Pages from-to
401-406
UT code for WoS article
000364250600067
EID of the result in the Scopus database
—