Hopf algebroids with balancing subalgebra
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019713" target="_blank" >RIV/62690094:18470/22:50019713 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0021869322000448?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0021869322000448?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2022.01.027" target="_blank" >10.1016/j.jalgebra.2022.01.027</a>
Alternative languages
Result language
angličtina
Original language name
Hopf algebroids with balancing subalgebra
Original language description
Recently, S. Meljanac proposed a construction of a class of examples of an algebraic structure with properties very close to the Hopf algebroids H over a noncommutative base A of other authors. His examples come along with a subalgebra B of H circle times H, here called the balancing subalgebra, which contains the image of the coproduct and such that the intersection of B with the kernel of the projection H circle times H -> H circle times(A) H is a two-sided ideal in B which is moreover well behaved with respect to the antipode. We propose a set of abstract axioms covering this construction and make a detailed comparison to the Hopf algebroids of Lu. We prove that every scalar extension Hopf algebroid can be cast into this new set of axioms. We present an observation by G. Bohm that the Hopf algebroids constructed from weak Hopf algebras fit into our framework as well. At the end we discuss the change of balancing subalgebra under Drinfeld-Xu procedure of twisting of associative bialgebroids by invertible 2-cocycles. (c) 2022 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF ALGEBRA
ISSN
0021-8693
e-ISSN
1090-266X
Volume of the periodical
598
Issue of the periodical within the volume
MAY
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
445-469
UT code for WoS article
000793251800018
EID of the result in the Scopus database
2-s2.0-85124401038