All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hopf Algebroid Twists for Deformation Quantization of Linear Poisson Structures

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F18%3A50014460" target="_blank" >RIV/62690094:18470/18:50014460 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.emis.de/journals/SIGMA/2018/026/sigma18-026.pdf" target="_blank" >https://www.emis.de/journals/SIGMA/2018/026/sigma18-026.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3842/SIGMA.2018.026" target="_blank" >10.3842/SIGMA.2018.026</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hopf Algebroid Twists for Deformation Quantization of Linear Poisson Structures

  • Original language description

    In our earlier article [Lett. Math. Phys. 107 (2017), 475-503], we explicitly described a topological Hopf algebroid playing the role of the noncommutative phase space of Lie algebra type. Ping Xu has shown that every deformation quantization leads to a Drinfeld twist of the associative bialgebroid of h-adic series of differential operators on a fixed Poisson manifold. In the case of linear Poisson structures, the twisted bialgebroid essentially coincides with our construction. Using our explicit description of the Hopf algebroid, we compute the corresponding Drinfeld twist explicitly as a product of two exponential expressions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS

  • ISSN

    1815-0659

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    UA - UKRAINE

  • Number of pages

    23

  • Pages from-to

    1-23

  • UT code for WoS article

    000428340200001

  • EID of the result in the Scopus database