Hopf Algebroid Twists for Deformation Quantization of Linear Poisson Structures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F18%3A50014460" target="_blank" >RIV/62690094:18470/18:50014460 - isvavai.cz</a>
Result on the web
<a href="https://www.emis.de/journals/SIGMA/2018/026/sigma18-026.pdf" target="_blank" >https://www.emis.de/journals/SIGMA/2018/026/sigma18-026.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3842/SIGMA.2018.026" target="_blank" >10.3842/SIGMA.2018.026</a>
Alternative languages
Result language
angličtina
Original language name
Hopf Algebroid Twists for Deformation Quantization of Linear Poisson Structures
Original language description
In our earlier article [Lett. Math. Phys. 107 (2017), 475-503], we explicitly described a topological Hopf algebroid playing the role of the noncommutative phase space of Lie algebra type. Ping Xu has shown that every deformation quantization leads to a Drinfeld twist of the associative bialgebroid of h-adic series of differential operators on a fixed Poisson manifold. In the case of linear Poisson structures, the twisted bialgebroid essentially coincides with our construction. Using our explicit description of the Hopf algebroid, we compute the corresponding Drinfeld twist explicitly as a product of two exponential expressions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS
ISSN
1815-0659
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
1
Country of publishing house
UA - UKRAINE
Number of pages
23
Pages from-to
1-23
UT code for WoS article
000428340200001
EID of the result in the Scopus database
—