Superintegrability of left-invariant sub-Riemannian structures on unimodular three-dimensional Lie groups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F15%3A50004706" target="_blank" >RIV/62690094:18470/15:50004706 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1134/S0012266115110087" target="_blank" >http://link.springer.com/article/10.1134/S0012266115110087</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S0012266115110087" target="_blank" >10.1134/S0012266115110087</a>
Alternative languages
Result language
angličtina
Original language name
Superintegrability of left-invariant sub-Riemannian structures on unimodular three-dimensional Lie groups
Original language description
We consider left-invariant sub-Riemannian problems on three-dimensional unimodular Lie groups. We show that the Hamiltonian system of the Pontryagin maximum principle for such problems is Liouville integrable and even superintegrable (i.e., has four independent integrals, three of which are in involution).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
DIFFERENTIAL EQUATIONS
ISSN
0012-2661
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
11
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
8
Pages from-to
1476-1483
UT code for WoS article
000366626700008
EID of the result in the Scopus database
2-s2.0-84950236460