Three-dimensional superintegrable systems in a static electromagnetic field
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F15%3A00231550" target="_blank" >RIV/68407700:21340/15:00231550 - isvavai.cz</a>
Result on the web
<a href="http://iopscience.iop.org/article/10.1088/1751-8113/48/39/395206" target="_blank" >http://iopscience.iop.org/article/10.1088/1751-8113/48/39/395206</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8113/48/39/395206" target="_blank" >10.1088/1751-8113/48/39/395206</a>
Alternative languages
Result language
angličtina
Original language name
Three-dimensional superintegrable systems in a static electromagnetic field
Original language description
We consider a charged particle moving in a static electromagnetic field described by the vector potential $vec{A}(vec{x})$ and the electrostatic potential $V(vec{x}).$ We study the conditions on the structure of the integrals of motion of the first and second order in momenta, in particular how they are influenced by the gauge invariance of the problem. Next, we concentrate on the three possibilities for integrability arising from the first order integrals corresponding to three nonequivalent subalgebras of the Euclidean algebra, namely $({P}_{1},{P}_{2}),$ $({L}_{3},{P}_{3})$ and $({L}_{1},{L}_{2},{L}_{3}).$ For these cases we look for additional independent integrals of first or second order in the momenta. These would make the system superintegrable(minimally or maximally). We study their quantum spectra and classical equations of motion. In some cases nonpolynomial integrals of motion occur and ensure maximal superintegrability.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0034" target="_blank" >EE2.3.30.0034: Support of inter-sectoral mobility and quality enhancement of research teams at Czech Technical University in Prague</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Volume of the periodical
48
Issue of the periodical within the volume
39
Country of publishing house
GB - UNITED KINGDOM
Number of pages
24
Pages from-to
—
UT code for WoS article
000361817800009
EID of the result in the Scopus database
2-s2.0-84941754872