An Equation Related to k-Generalized Fibonacci Numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F16%3A50005360" target="_blank" >RIV/62690094:18470/16:50005360 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
An Equation Related to k-Generalized Fibonacci Numbers
Original language description
For k<3, the k-generalized Fibonacci sequence (F_n^{(k)}){n} is defined by the initial values 0,0,ldots,0,1 (k terms) and such that each term afterwards is the sum of the k preceding terms. In this paper, we shall prove that the only solutions of the Diophantine equation F_n^{(k)}=k2^m+1 in positive integers m, n and k<3, are (n,k,m)=(5,2,1), (5,3,1) and (6,3,2). For that, we shall use lower bounds for linear forms in logarithms together with a computational approach using Mathematica software.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Utilitas Mathematica
ISSN
0315-3681
e-ISSN
—
Volume of the periodical
101
Issue of the periodical within the volume
November
Country of publishing house
CA - CANADA
Number of pages
11
Pages from-to
79-89
UT code for WoS article
000387834100007
EID of the result in the Scopus database
—