Fibonacci Numbers with a Prescribed Block of Digits
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50016849" target="_blank" >RIV/62690094:18470/20:50016849 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/8/4/639" target="_blank" >https://www.mdpi.com/2227-7390/8/4/639</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8040639" target="_blank" >10.3390/math8040639</a>
Alternative languages
Result language
angličtina
Original language name
Fibonacci Numbers with a Prescribed Block of Digits
Original language description
In this paper, we prove that F_{22} = 17711 is the largest Fibonacci number whose decimal expansion is of the form ab...bc...c. The proof uses lower bounds for linear forms in three logarithms of algebraic numbers and some tools from Diophantine approximation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
7
Pages from-to
"Article Number: 639"
UT code for WoS article
000531824100179
EID of the result in the Scopus database
2-s2.0-85084481191