Betti and Tachibana numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F13%3A33145767" target="_blank" >RIV/61989592:15310/13:33145767 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Betti and Tachibana numbers
Original language description
We present a rough classification of differential forms on a Riemannian manifold, we consider definitions and properties of conformal Killing forms on a compact Riemannian manifold and define Tachibana numbers as an analog of the well known Betti numbers. We state the conditions that characterize these numbers. In the last section we show connections between the Betti and Tachibana numbers.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannian, pseudo-Riemannian and affine differential geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Miskolc Mathematical Notes (print)
ISSN
1787-2405
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
2
Country of publishing house
HU - HUNGARY
Number of pages
12
Pages from-to
"475?486"
UT code for WoS article
000329498700008
EID of the result in the Scopus database
—