Betti and Tachibana numbers of compact Riemannian manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F13%3A33145716" target="_blank" >RIV/61989592:15310/13:33145716 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.difgeo.2013.04.004" target="_blank" >http://dx.doi.org/10.1016/j.difgeo.2013.04.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.difgeo.2013.04.004" target="_blank" >10.1016/j.difgeo.2013.04.004</a>
Alternative languages
Result language
angličtina
Original language name
Betti and Tachibana numbers of compact Riemannian manifolds
Original language description
We present definitions and properties of conformal Killing forms on a Riemannian manifold and determine Tachibana numbers as analogs of the well known Betti numbers of a compact Riemannian manifold. We show some sets of conditions which characterize these numbers. Finally, we prove some results which establish relationships between Betti and Tachibana numbers.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannian, pseudo-Riemannian and affine differential geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Differential Geometry and Its Applications
ISSN
0926-2245
e-ISSN
—
Volume of the periodical
31
Issue of the periodical within the volume
4
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
486-495
UT code for WoS article
000321537400004
EID of the result in the Scopus database
—