All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Some problems related to the growth of z(n)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50016870" target="_blank" >RIV/62690094:18470/20:50016870 - isvavai.cz</a>

  • Result on the web

    <a href="https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-020-02735-5" target="_blank" >https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-020-02735-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s13662-020-02735-5" target="_blank" >10.1186/s13662-020-02735-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Some problems related to the growth of z(n)

  • Original language description

    Let (Fn)n &gt;= 0 be the Fibonacci sequence. The order of appearance z(n) of a positive integer n is defined as z(n):=min{k &gt;= 1:n divide Fk}. In 2013, Marques proved that lim infn -&gt;infinity z(n)/n=0. Let epsilon be a positive real number. In this paper, in particular, we generalized this Marques&apos; result by proving that almost all positive integers satisfy z(n)/n &lt; epsilon.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in difference equations

  • ISSN

    1687-1847

  • e-ISSN

  • Volume of the periodical

    2020

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    "Article Number: 270"

  • UT code for WoS article

    000540587200005

  • EID of the result in the Scopus database

    2-s2.0-85086005324