All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The determinant of one-dimensional polyharmonic operators of arbitrary order

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017241" target="_blank" >RIV/62690094:18470/20:50017241 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jfa.2020.108783" target="_blank" >https://doi.org/10.1016/j.jfa.2020.108783</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jfa.2020.108783" target="_blank" >10.1016/j.jfa.2020.108783</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The determinant of one-dimensional polyharmonic operators of arbitrary order

  • Original language description

    We obtain an explicit expression for the regularised spectral determinant of the polyharmonic operator P-n = (-1)(n)(partial derivative(x))(2n) on (0, T) with Dirichlet boundary conditions and n a positive integer, and show that it satisfies the asymptotics log(det P-n) = -n(2) log n + [7 zeta(3)/2 pi(2)+ 3/2 + log )T/4)] n(2) + O(n) for large n. This is a consequence of sharp upper and lower bounds for log(det P-n) valid for all nand which coincide in the terms up to order n. These results form the basis to analyse more general operators with nonconstant coefficients and show that the corresponding determinants have a similar asymptotic behaviour.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of functional analysis

  • ISSN

    0022-1236

  • e-ISSN

  • Volume of the periodical

    279

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    30

  • Pages from-to

    "Article Number: 108783"

  • UT code for WoS article

    000581124100006

  • EID of the result in the Scopus database

    2-s2.0-85091770785