Interpolations between Jordanian twists, the Poincare-Weyl algebra and dispersion relations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F20%3A50017433" target="_blank" >RIV/62690094:18470/20:50017433 - isvavai.cz</a>
Result on the web
<a href="https://www.worldscientific.com/doi/abs/10.1142/S0217751X20500347" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S0217751X20500347</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0217751X20500347" target="_blank" >10.1142/S0217751X20500347</a>
Alternative languages
Result language
angličtina
Original language name
Interpolations between Jordanian twists, the Poincare-Weyl algebra and dispersion relations
Original language description
We consider a two-parameter family of Drinfeld twists generated from a simple Jordanian twist further twisted by 1-cochains. Twists from this family interpolate between two simple Jordanian twists. Relations between them are constructed and discussed. It is proved that there exists a one-parameter family of twists identical to a simple Jordanian twist. The twisted coalgebra, star product and coordinate realizations of the kappa-Minkowski non-commutative space-time are presented. Real forms of Jordanian deformations are also discussed. The method of similarity transformations is applied to the Poincare-Weyl Hopf algebra and two types of one-parameter families of dispersion relations are constructed. Mathematically equivalent deformations, that are related to nonlinear changes of symmetry generators and linked with similarity maps, may lead to differences in the description of physical phenomena.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
INTERNATIONAL JOURNAL OF MODERN PHYSICS A
ISSN
0217-751X
e-ISSN
—
Volume of the periodical
35
Issue of the periodical within the volume
8
Country of publishing house
SG - SINGAPORE
Number of pages
15
Pages from-to
"Article Number: 2050034"
UT code for WoS article
000527642800002
EID of the result in the Scopus database
—